Busulfan Dosing in Children: Body Weight versus Body Surface Area or Allometric Body Weight Dosing

Trame MN^{1,2,3} · Bergstrand M² · Karlsson MO² · Boos J³ · Hempel G^{1,3}

¹Department of Pharmaceutical and Medical Chemistry – Clinical Pharmacy -, University of Münster, Germany ²Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden ³Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Germany Contact e-mail: tramemirjam@uni-muenster.de

Background and Objectives

Results

0.4

0.3

- Busulfan is frequently used in high-dose conditioning regimens prior to bone marrow transplantation in children
- Aim of this analysis was to evaluate whether the current licensed EMA dosing recommendation of IV busulfan (Busilvex®) according to body weight (BW) is appropriate for dosing busulfan in children and if a more precise dosing recommendation can be suggested
- Due to the narrow therapeutic index of busulfan with an AUC of 900 -1500 µM*min it was of particular interest to compare the area under the curve (AUC) of a BW based dosing regimen¹ as recommended in the labelling of Busilvex® with other dosing regimens such as a body surface area (BSA) based dosing regimen

Patients

Model Development Dataset

- 94 children received busulfan prior to bone marrow transplantation
- Median age 9.2 years (range 0.4 18.8 years) 48 children received oral busulfan every 6 h
- - 41 received between 13 and 20 mg/kg
- 7 received a dose of 600 mg/m²
- 46 children received IV busulfan as an infusion
- first dose was given as a double dose: 1.4 2.0 mg/kg over 4 h followed 12 h later by 15 single doses: 0.7 – 1.0 mg/kg every 6 h Model Evaluation Dataset
- 24 children, median age 2.6 years (range 0.1 18.9 years), received IV
 - busulfan once daily as a 3 h infusion
 - first dose in patients > 1 year: 120 mg/m²
 - first dose in patients < 1 year: 80 mg/m2 followed by doses evaluated through TDM

Plasma Sample Collection and Analysis

- Plasma samples were drawn during routine drug monitoring in children receiving busulfan
- 4 5 samples per dosing regimen prior to next dose
- All plasma samples were analysed either by HPLC using postcolumn photolysis or by LC-MS with a LOQ of 5 μ g/L

Population Pharmacokinetic Analysis

- Plasma concentration-time data were analysed using NONMEM VI
- One-compartment model with 1st-order absorption
- FOCE Interaction
- · Residual variability was modelled using a proportional error model
- · Exponential model for IIV and IOV
- Covariates

BSA or BW^0.75 as a covariate on clearance (CL) and BW as a covariate on volume of distribution (V)

	Base model	BSA model	Allometric BW model
Fixed effects			
CL [L h ⁻¹]	3.1 (9%)	4.2 m ⁻² (4%)	4.1 kg ^{-0.75} (3%)*
V [L]	15.3 (11%)	18.4 kg ⁻¹ (5%)*	18.3 kg ⁻¹ (5%)*
k _a [h ⁻¹]	0.963 (23%)	1.03 (18%)	0.983 (18%)
F [%]	61 (11%)	93 (4%)	99 (11%)
BW_factor on V [%]		3.42 (6%)	2.52 (5%)
Random effects			
Interindividual variability			
CL [%]	47 (10%)	23 (10%)	21 (10%)
V [%]	56 (12%)	29 (19%)	24 (24%)
k _a [%]	100 (14%)	95 (15%)	104 (14%)
F [%]**	29 (21%) [0.72]	19 (24%) [2.55]	25 (49%) [10.4]
Intraindividual variability			
CL [%]	10 (27%)	11 (21%)	11 (21%)
V [%]	20 (26%)	21 (22%)	22 (21%)
Residual error			
proportional [%]	27 (7%)	27 (6%)	27 (6%)
Objective function	10842	10669	10664

Table 1: Population model comparison [Abbreviations: BW body weight, BSA body surface range, CL clearance, V volume of distributions, k₂ absorption rate constant, F bioavailability, standard errors in brackets, * estimated for a 27.2 kg subject, ** CV% based on simulations (sd(Fi)/mean(Fi)) and in squared parenthesis shows the variance for the logit-transform of F]

< 9 kg 9 to < 16 kg 16 - 23 kg > 23 - 34 kg > 34 kg · CL values did not reflect the shape of the CL versus weight curve as reported in previous investigations^{1,2}, in neither the development nor the evaluation dataset (figure 1 a,b). Instead, our data show a 22% higher CL for children < 9 kg of BW and

lower CL values (range 33-58%) for children > 9 kg of BW Comparing the CL per BSA (figure 1 c) or per allometric BW (figure 1 d), no difference in the scaled CL between the five

< 9 kg 9 to < 16 kg 16 - 23 kg > 23 - 34 kg > 34 kg Figure 1: Clearance in different weight strata; (a) clearance for the development dataset per BW; dashed and solid red lines: mean clearance values from a previous investigation²; (b) clearance for the evaluation dataset per BW; (c) clearance per BSA; (d) clearance per allometric body weight; plots the median, 10th, 25th, 75th, and 90th percentiles as vertical boxes with error bars

weight groups is seen

By external model evaluation and simulation using prediction corrected Visual Predictive Checks³ we were able to confirm the models (figure 2).

Figure 2: prediction corrected Visual Predictive Checks (pcVPC); (a) development models with IV busulfan data; (b) development models with oral busulfan data; (c) evaluation dataset; pcVPCs show the median (solid red line), 5th and 95th percentiles (dashed red lines) for the observed data with 95% confidence intervals for the median (red field), 5% and 95% percentiles (blue fields) based on simulations

Based on the final models, two dosing schemes for dosing IV busulfan according to BSA and allometric BW were simulated, showing that about 30% more patients were estimated to be within the proposed therapeutic AUC range of 900-1500 μM*min. Further, using these dosing regimens a decrease in the AUC variability compared to the labelled EMA dosing recommendation was achieved (figure 4).

BSA dosing regimen

Dose (mg) = 4.72* mg h L⁻¹ × 4.16 L h⁻¹ m⁻² × BSA m² = 19.6 mg m⁻² × BSA m²

Allometric BW dosing regimen

Dose (mg) = 4.72° mg h L⁻¹ x 4.11 L h⁻¹ kg^{-0.75} x (BW/27.2) kg^{0.75} = 19.4 mg kg^{-0.75} x (BW/27.2) kg^{0.75}

$^{*}AUC_{target} = 1150 \ \mu mol \ min \ L^{-1} = 4.72 \ mg \ h \ L^{-1}$

Figure 4: AUC simulations for the different dosing regimens with an AUC_{tanget} of 1150 µM*min; (a) EMA dosing regimen; (b) allometric body weight dosing regimen; (c) BSA dosing regimen; plots the 10th, 25th, 50th, 75th and 90th percentiles as vertical boxes with error bars [Abbreviations: AUC area under the curve, BW^0.75 allometric body weight, BSA body surface area, EMA European Medicine Agency]

References

Nguyen L et al. I.V. Busulfan in pediatrics: a novel dosing to improve safety/efficacy for hematopoietic progenitor cell transplantation recipients. Bone Marrow Transplant. 2004;33:979-987
Vassal G et al. Prospective validation of a novel IV busulfan fixed dosing for paediatric patients to improve therapeutic AUC targeting without drug monitoring. Cancer Chemother: Pharmacol. 2006;61:173-123
Bergstrand M et al. Prodiction: Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Model. AAPS J. 2011

Conclusion

- The findings of our analysis provide an alternate dose regimen to the EMA dosing recommendation of Busilvex® in children.
- Dose regimens based on BSA and allometric BW provide AUCs closer to the therapeutic target for a priori and TDM dose adjustments based on our simulations. An update to Busilvex[®] labelling may be warranted